9 research outputs found

    Automatic Recognition of Arabic Poetry Meter from Speech Signal using Long Short-term Memory and Support Vector Machine

    Get PDF
    The recognition of the poetry meter in spoken lines is a natural language processing application that aims to identify a stressed and unstressed syllabic pattern in a line of a poem. Stateof-the-art studies include few works on the automatic recognition of Arud meters, all of which are text-based models, and none is voice based. Poetry meter recognition is not easy for an ordinary reader, it is very difficult for the listener and it is usually performed manually by experts. This paper proposes a model to detect the poetry meter from a single spoken line (“Bayt”) of an Arabic poem. Data of 230 samples collected from 10 poems of Arabic poetry, including three meters read by two speakers, are used in this work. The work adopts the extraction of linear prediction cepstrum coefficient and Mel frequency cepstral coefficient (MFCC) features, as a time series input to the proposed long short-term memory (LSTM) classifier, in addition to a global feature set that is computed using some statistics of the features across all of the frames to feed the support vector machine (SVM) classifier. The results show that the SVM model achieves the highest accuracy in the speakerdependent approach. It improves results by 3%, as compared to the state-of-the-art studies, whereas for the speaker-independent approach, the MFCC feature using LSTM exceeds the other proposed models

    Automatic Speech Emotion Recognition- Feature Space Dimensionality and Classification Challenges

    Get PDF
    In the last decade, research in Speech Emotion Recognition (SER) has become a major endeavour in Human Computer Interaction (HCI), and speech processing. Accurate SER is essential for many applications, like assessing customer satisfaction with quality of services, and detecting/assessing emotional state of children in care. The large number of studies published on SER reflects the demand for its use. The main concern of this thesis is the investigation of SER from a pattern recognition and machine learning points of view. In particular, we aim to identify appropriate mathematical models of SER and examine the process of designing automatic emotion recognition schemes. There are major challenges to automatic SER including ambiguity about the list/definition of emotions, the lack of agreement on a manageable set of uncorrelated speech-based emotion relevant features, and the difficulty of collected emotion-related datasets under natural circumstances. We shall initiate our work by dealing with the identification of appropriate sets of emotion related features/attributes extractible from speech signals as considered from psychological and computational points of views. We shall investigate the use of pattern-recognition approaches to remove redundancies and achieve compactification of digital representation of the extracted data with minimal loss of information. The thesis will include the design of new or complement existing SER schemes and conduct large sets of experiments to empirically test their performances on different databases, identify advantages, and shortcomings of using speech alone for emotion recognition. Existing SER studies seem to deal with the ambiguity/dis-agreement on a “limited” number of emotion-related features by expanding the list from the same speech signal source/sites and apply various feature selection procedures as a mean of reducing redundancies. Attempts are made to discover more relevant features to emotion from speech. One of our investigations focuses on proposing a newly sets of features for SER, extracted from Linear Predictive (LP)-residual speech. We shall demonstrate the usefulness of the proposed relatively small set of features by testing the performance of an SER scheme that is based on fusing our set of features with the existing set of thousands of features using common machine learning schemes of Support Vector Machine (SVM) and Artificial Neural Network (ANN). The challenge of growing dimensionality of SER feature space and its impact on increased model complexity is another major focus of our research project. By studying the pros and cons of the commonly used feature selection approaches, we argued in favour of meta-feature selection and developed various methods in this direction, not only to reduce dimension, but also to adapt and de-correlate emotional feature spaces for improved SER model recognition accuracy. We used rincipal Component Analysis (PCA) and proposed Data Independent PCA (DIPCA) by training on independent emotional and non-emotional datasets. The DIPCA projections, especially when extracted from speech data coloured with different emotions or from Neutral speech data, had comparable capability to the PCA in terms of SER performance. Another adopted approach in this thesis for dimension reduction is the Random Projection (RP) matrices, independent of training data. We have shown that some versions of RP with SVM classifier can offer an adaptation space for Speaker Independent SER that avoid over-fitting and hence improves recognition accuracy. Using PCA trained on a set of data, while testing on emotional data features, has significant implication for machine learning in general. The thesis other major contribution focuses on the classification aspects of SER. We investigate the drawbacks of the well-known SVM classifier when applied to a preprocessed data by PCA and RP. We shall demonstrate the advantages of using the Linear Discriminant Classifier (LDC) instead especially for PCA de-correlated metafeatures. We initiated a variety of LDC-based ensembles classification, to test performance of scheme using a new form of bagging different subsets of metafeature subsets extracted by PCA with encouraging results. The experiments conducted were applied on two benchmark datasets (Emo-Berlin and FAU-Aibo), and an in-house dataset in the Kurdish language. Recognition accuracy achieved by are significantly higher than the state of art results on all datasets. The results, however, revealed a difficult challenge in the form of persisting wide gap in accuracy over different datasets, which cannot be explained entirely by the differences between the natures of the datasets. We conducted various pilot studies that were based on various visualizations of the confusion matrices for the “difficult” databases to build multi-level SER schemes. These studies provide initial evidences to the presence of more than one “emotion” in the same portion of speech. A possible solution may be through presenting recognition accuracy in a score-based measurement like the spider chart. Such an approach may also reveal the presence of Doddington zoo phenomena in SER

    Efficient Kinect Sensor-based Kurdish Sign Language Recognition Using Echo System Network

    Get PDF
    Sign language assists in building communication and bridging gaps in understanding. Automatic sign language recognition (ASLR) is a field that has recently been studied for various sign languages. However, Kurdish sign language (KuSL) is relatively new and therefore researches and designed datasets on it are limited. This paper has proposed a model to translate KuSL into text and has designed a dataset using Kinect V2 sensor. The computation complexity of feature extraction and classification steps, which are serious problems for ASLR, has been investigated in this paper. The paper proposed a feature engineering approach on the skeleton position alone to provide a better representation of the features and avoid the use of all of the image information. In addition, the paper proposed model makes use of recurrent neural networks (RNNs)-based models. Training RNNs is inherently difficult, and consequently, motivates to investigate alternatives. Besides the trainable long short-term memory (LSTM), this study has proposed the untrained low complexity echo system network (ESN) classifier. The accuracy of both LSTM and ESN indicates they can outperform those in state-of-the-art studies. In addition, ESN which has not been proposed thus far for ASLT exhibits comparable accuracy to the LSTM with a significantly lower training time

    Kurdish Dialects and Neighbor Languages Automatic Recognition

    Get PDF
    Dialect recognition is one of the most hot topics in the speech analysis area. In this study a system for dialect and language recognition is developed using phonetic and a style based features. The study suggests a new set of feature using one-dimensional LBP feature.  The results show that the proposed LBP set of feature is useful to improve dialect and language recognition accuracy. The acquired data involved in this study are three Kurdish dialects (Sorani, Badini and Hawrami) with three neighbor languages (Arabic, Persian and Turkish). The study proposed a new method to interpret the closeness of the Kurdish dialects and their neighbor languages using confusion matrix and a non-metric multi-dimensional visualization technique. The result shows that the Kurdish dialects can be clustered and linearly separated from the neighbor languages

    A New Feature Extraction Technique Based on 1D Local Binary Pattern for Gear Fault Detection

    Get PDF
    Gear fault detection is one of the underlying research areas in the field of condition monitoring of rotating machines. Many methods have been proposed as an approach. One of the major tasks to obtain the best fault detection is to examine what type of feature(s) should be taken out to clarify/improve the situation. In this paper, a new method is used to extract features from the vibration signal, called 1D local binary pattern (1D LBP). Vibration signals of a rotating machine with normal, break, and crack gears are processed for feature extraction. The extracted features from the original signals are utilized as inputs to a classifier based onNearest Neighbour ( -NN) and Support Vector Machine (SVM) for three classes (normal, break, or crack). The effectiveness of the proposed approach is evaluated for gear fault detection, on the vibration data obtained from the Prognostic Health Monitoring (PHM'09) Data Challenge. The experiment results show that the 1D LBP method can extract the effective and relevant features for detecting fault in the gear. Moreover, we have adopted the LOSO and LOLO cross-validation approaches to investigate the effects of speed and load in fault detection

    Enabling accurate indoor localization for different platforms for smart cities using a transfer learning algorithm

    Get PDF
    This is an accepted manuscript of an article published by Wiley in Internet Technology Letters on 17/09/2020, available online: https://doi.org/10.1002/itl2.200 The accepted version of the publication may differ from the final published version.Indoor localization algorithms in smart cities often use Wi‐Fi fingerprints as a database of Received Signal Strength (RSS) and its corresponding position coordinate for position estimation. However, the issue of fingerprinting is the use of different platform‐devices. To this end, we propose a Long Short‐Term Memory (LSTM)‐based novel indoor positioning mechanism in smart city environment. We used LSTM, a type of recurrent neural network to process sequential data of users’ trajectory in indoor buildings. The proposed approach first utilizes a database of normalizing fingerprint landmarks to calculateWiFi Access Points (WAPs) RSS values to mitigate the fluctuation issue and then apply the normalization parameters on the RSS values during the online phase. Afterwards, we constructed a transfer model to adapt the RSS values during the offline phase and then applying it on the RSS values from the different smartphones during the online phase. Thorough simulation results confirm that the proposed approach can obtain 1.5 to 2 meters positioning accuracy for indoor environments, which is 60 % higher than traditional approaches

    A Novel Poisoned Water Detection Method Using Smartphone Embedded Wi-Fi Technology and Machine Learning Algorithms

    Full text link
    Water is a necessary fluid to the human body and automatic checking of its quality and cleanness is an ongoing area of research. One such approach is to present the liquid to various types of signals and make the amount of signal attenuation an indication of the liquid category. In this article, we have utilized the Wi-Fi signal to distinguish clean water from poisoned water via training different machine learning algorithms. The Wi-Fi access points (WAPs) signal is acquired via equivalent smartphone-embedded Wi-Fi chipsets, and then Channel-State-Information CSI measures are extracted and converted into feature vectors to be used as input for machine learning classification algorithms. The measured amplitude and phase of the CSI data are selected as input features into four classifiers k-NN, SVM, LSTM, and Ensemble. The experimental results show that the model is adequate to differentiate poison water from clean water with a classification accuracy of 89% when LSTM is applied, while 92% classification accuracy is achieved when the AdaBoost-Ensemble classifier is applied

    A Hybrid Temporal Feature for Gear Fault Diagnosis Using the Long Short Term Memory

    No full text
    corecore